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Abstract - Target tracking is an important application for putation and thus the processing has to be distributed, with
Abrelsstract ho T etsor t ngtworks. i eas e an i a th a nfrgy nodes communicating processed data instead of sensor data.
wireless ad hoc sensor networks. Because of the energy Distributed tracking for sensor networks was first inves-
and communication constraints imposed by the size of the tigated in the early 1980's to understand how sensors with
sensors, the processing has to be distributed over the distributed but overlapping coverage can be used to detect
sensor nodes. This paper discusses issues associated with adtaktres ic hnteehsbe uhrsac

distibued ultple argt tackng fr a ho sesor and track targets. Since then there has been much research
distributed multiple target tracking for ad hoc sensor

networks and examines the applicability of tracking algo- on distributed tracking [2,3]. However, energy constrainednetwrksandexaine th aplicailiy o trckig ago-processing and communication has not been a main concern

rithms developed for traditional networks of large sensors. and the research emphasis has been on association and

When data association is not an issue, the standard pre- fusion of tracks from multiple processing nodes.

dict/update structure in single target tracking can be used Distributed tracking in sensor networks is a multi-

to assign individual tracks to the sensor nodes based on Discipnyea that invles har ware, si a prcsin
their locations. Track ownership will have to be carefully disciplinary area that involves hardware, signal processing,
theigrlocatedsions Tora onerhpe wilhavetion bven c ore estimation and inference algorithms, and computer science.
msingrat, usmingz fr nexaped iforcommuniation drsensr Researchers in computer science and signal processing have
tasigeto m inie then need fssorc ommunationisnee n when undertaken most of the recent work [4,5]. While feasibility
targets move. When data association is needed in tracking has been demonstrated for simple scenarios in simulated
multiple interacting targets, clusters of tracks should be and real test beds, the development of algorithms for more
assigned to groups of collaborating nodes. Some recentexasplesi tof gros typof collaboratingnodes. Some reent difficult and realistic tracking scenarios is just beginning.
examples of this type ofdistributed processing are given. This paper starts with the standard tracking algorithms and

investigates how processing can be mapped to a sensor
Keywords: Wireless ad hoc sensor networks, multiple network with energy and communication constraints. We
target tracking, distributed tracking hope to demonstrate that high performance tracking algo-

rithms can be implemented in such ad hoc sensor network.

1 Introduction The rest of this paper is structured as follows. Section 2
provides a historical perspective on tracking for large sensor

Recent advances in micro electromechanical systems networks, discusses the challenges faced by tracking in
(MEMS) and wireless technologies have resulted in inex- small sensor networks and the state-of-the-art. Section 3
pensive micro-sensors with embedded processing and presents algorithms for single target tracking and how the
communication capabilities [1]. A sensor network consist- processing can be distributed over a sensor network. Infor-
ing of many micro-sensors communicating with each other mation driven sensor query is given as an example. In
over wireless links can be deployed rapidly in an area of Section 4 we discuss multiple target tracking algorithms and
interest and used in applications ranging from environ- the implication of data association on distributed process-
mental monitoring to battlefield surveillance. In this paper ing. An example of group management for distributed track
we focus on target tracking with such ad hoc sensor net- initiation and maintenance is given. Section 5 presents some
works. issues for future research and concluding remarks.

The availability of inexpensive sensors means that they
can be deployed much closer to the targets of interest for 2 Tracking in Sensor Networks
detection and tracking. Collaboration among the sensors can
result in accuracy not achievable with individual sensors. At The objective of single target tracking is to generate an
the same time, energy constraints due to the size of the accurate estimate of the target position. When multiple
sensors impose special processing requirements that are targets are present, tracking determines the number of
different from tracking with other traditional types of targets and estimates the position and velocity of each
sensors such as ground-based or airborne radars. In particu- target. In some applications, it is also important to maintain
lar, communication requires much more energy than the continuity of each track, e.g., to determine the identity
computation and thus the processing has to be distributed, of the target and its origin.
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Multiple sensors are needed when a single sensor does the program was very ambitious, with large numbers of
not provide enough spatial coverage. Furthermore, multiple small inexpensive sensors interconnected by wireless
sensors exploiting different phenomenology can provide communication, the technology at that time was not quite
complementary information to improve tracking accuracy. ready. Thus, DSN research was focused more on fixed
Thus there is significant advantage in using a distributed networks of a small number of large sensors without energy
network of sensors for target tracking. constraints. In particular, the main test bed for distributed

The measurements from a sensor network can be proc- tracking consists of acoustic sensor arrays that are 6 meters
essed by different architectures [6]. In a centralized archi- across and powered by generators. A history of sensor
tecture, all the measurements are sent to a central site for network research evolution and challenges can be found in
processing. This architecture is theoretically optimal since [8].
the central site has access to all information. However, A generic distributed tracking architecture was proposed
significant bandwidth is needed for communication and the in [2] and each processing node (Fig. 2) consists of the
central site is a single point of failure. In a distributed following components:
architecture, there are multiple processing sites, each * Local processing that performs multiple hypothesis
responsible for a number of sensors. These sites process tracking (MHT) with the local sensor data
their local measurements and communicate results with * Information fusion that associates the tracks in the in-
other sites. The distributed architecture does not provide coming hypotheses with the tracks in the local hy-
optimal performance, but requires less communication and potheses and updates the state estimate of each track
is more robust since there is no single point of failure. * Information distribution that decides when, what and

The main issues of distributed tracking are: how the to whom to communicate by considering the local in-
processing should be distributed; how the sensors should be formation content and information needs of the remote
controlled to balance performance versus resource utiliza- nodes
tion; what should be communicated between the processing N

nodes; and when communication should take place. After Sensor InfrNode
MeasurementsF

communication, the issue is how to fuse the incoming data j Other

with the local data.

2.1 Small Number of Large Sensors

Until recently, most distributed tracking systems consist Figure 2: Structure of DSN Node
of large sensor nodes (Fig. 1) such as airborne radars used
in military systems. These sensors have fairly large fields of The use of multiple hypotheses in both local processing
view so that each sensor can detect and observe many and information fusion assumes that the processing nodes
targets. They may also have overlapping coverage so that are quite powerful and that communication is not an issue.
multiple sensors, can observe the same targets. In a hierar- Since communication can be quite complicated in general,
chical tracking architecture, multiple processing nodes the information to be fused may contain common informa-
controlling different sensors may form their own tracks. tion from previous communication. The concept of informa-
Thus two main processing functions in a distributed track- tion graph was introduced to keep track of the communica-
ing system are associating the tracks from different process- tion history so that common information can be identified
ing nodes and fusing the state estimates of associated tracks and removed.
[7]. Since these estimates may have common information This distributed tracking concept (without using MHT)
due to past communication, the fusion algorithm has to was demonstrated in a test bed developed by M.I.T. Lincoln
recognize this correlation as well as that due to common Laboratory [9,10] to track low-flying aircraft using multiple
process noise in the target dynamics. acoustic arrays. Since then much research has been per-

formed on the problem of track association and track fusion
Sensor Field -sae siae r o

of View X when the states estimates of the tracks are not conditionally
,, x " 'X Sensor 0 independent [I1l. The emphasis has been more on achiev-

x 0 X Taxre ing optimal performance than addressing communication or
X T X energy constraints.

"2.2 Wireless Ad Hoc Sensor Networks

Advances in sensing, processing and computing hard-
Figure 1: Large Sensor Networks ware over the past few years have made wireless micro-

sensor network envisioned in the DSN program a reality. A
Research on distributed tracking for such networks began typical sensor node has a microprocessor and a limited

with the DARPA Distributed Sensor Networks (DSN) amount of memory for signal processing and task schedul-
program in the early 1980's. Although the original vision of ing. Its sensors may include acoustic microphone arrays,
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video or still cameras, infrared, seismic, or magnetic sensing Tracking in wireless ad hoc sensor networks is inter-
devices. Each sensor node communicates wireless with a twined with other issues such as routing protocols and
small number of neighboring nodes within the communica- signal processing. So far, most of the research has empha-
tion range. Current wireless sensor hardware ranges from sized simple algorithms and feasibility demonstration in
the shoebox sized Sensoria WINS sensors [12] to the uncomplicated scenarios. To address more difficult and
matchbox sized Berkeley motes [13]. realistic scenarios, much additional research is needed. The

remaining sections of this paper will show how tracking
...-.......-..---..----....---....--- ...... algorithms developed for more complicated scenarios can

" % "be adapted to wireless ad hoc sensor networks.

a s ... 3 Tracking Single Target
X 'Y, Target X

o:C b, , Our approach to distributed tracking is to show that some
V fairly standard tracking algorithms may be applied to

I ------ wireless ad hoc sensor networks. This section will focus on
single target tracking. Section 4 will address algorithms for

Figure 3: Dense Sensor Networks tracking multiple targets when data association is needed.

Because of the low cost, many of these sensors can be 3.1 Model
deployed rapidly in an ad hoc manner to form a dense
network in the area of interest. At the same time, the limited We assume that either only one target is present in the
sensing range, battery, processing power, and bandwidth network or there are multiple widely separated targets so
also create many challenging research issues. These include: that data association is not needed. Let x(t) be the target
network discovery so that nodes can communicate with state (position, velocity, etc.) at time t. The target state
each other; network control and routing, collaborative dynamics model is given by the state transition probability
signal and information processing, tasking and query, and P(x(t + At) I x(t)).
security [8]. Let z(t) be the measurement at time t. The sensor

The amount of energy used in wireless communication is
particularly relevant in designing tracking architectures for
wireless sensor networks. Since wireless communication target-state-to-measurement transition probability. In

dominates the energy consumption in embedded networked general a sensor may not always detect a target, implying a
systems, it is important to minimize the amount and range detection probability that is strictly less than 1. A measure-

of communication as much as possible through local col- ment on the target is a triple (z, t,, s,), of measurement z
laboration and data compression, communicating only when obtained at time tk by sensor sk. When a sensor Sk ob-
necessary. Further energy savings can be obtained through serves at time tk and does not generate a measurement, that
sensor management. Even though each sensor may contrib-
ute additional information to tracking, the information information is represented by a triple (, tk I, sk), where 0

contribution of each measurement should be balanced is the symbol for nothing. At any given time, the cumulative
against its resource utilization. This is especially crucial in measurement set Zk includes all measurements collected up
dense networks, where measurements are highly redundant to tk.

and not all measurements are needed when energy is lim- Any measurement generated by a sensor may not origi-
ited.ited. rnate from the target being tracked. Such a measurement isThe ecetly oncude DARA Snso Infrmaionreferred to as a "false alarm". In the current section, we
Technology (SensIT) program [14] addressed many of these assume that there are no false alarms in the measurements.
issues. In particular tracking algorithms have been devel-
oped under the name of "Collaborative Signal and Informa- 3.2 Basic Algorithm
tion Processing" [15]. These algorithms focus on how to
distribute the processing over the sensor nodes to minimize The basic algorithm for single target tracking consists of
communication and how to select sensors to reduce energy the following two steps: prediction and update. Assume that
consumption. With proper sensor tasking and control, at any a measurement z(tk) or (z(tk ), t, ,s,) is generated at time
given time, a single sensor node is responsible for tracking a tk.
particular target and the responsibility may migrate from Prediction. The previous estimate P(X(tkI)IZk,) is

sensor to sensor. Thus, a target is tracked by only one
sensor, and there is no need for track association or fusion, predicted to the current time by

This is quite different from distributed tracking for net- P(X(t) I - fp(X(t) I -))P(X(tk)I Zk1 )dX(tkI
works with a small number of large sensors where a target
may be tracked by multiple sensors. (1)
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Update. The current measurement is used to update the Initialization: One or more sensors detect the target for
predicted probability by the first time when it begins to move (e.g., generating

acoustic signal). The first sensor to detect the target be-
P(X(tk) IZk) = C (2 comes the processing node and initializes the track with a

where C is a normalization constant, state estimate P(x(t,) I Z(t,)) . As the owner of this track, it
When the state transition and measurement equations are suppresses all other neighboring sensors that can sense this

linear and Gaussian, these two steps become the standard target from making more measurements. These sensor
Kalman filter and the probabilities represented by the means nodes can then go back to sleep, thus conserving their
and covariances. For the general nonlinear problem, equa- batteries.
tions (1) and (2) can be implemented by linearization Prediction: The processing node for this track predicts
techniques such as extended Kalman filter or unscented the target state estimate P(x(t,) Zk,,) at time tk when the
Kalman filter, discretization of state space or Monte Carlo next measurement will be taken usin gequation (1), the local
methods such as particle filters. When multiple targets are
present, these two steps have to be performed for each ese and the mot odel. the senonde
target plus data association to be discussed later. In the rest wose covrae has to oe the pr edite
of this paper, we may use target state estimate to meanpoionsthncsetoetepresngodadteondithionpalerwemayue target state d, ttrack state distribution is moved to this node, thus incurringconditional target state distribution. s m o m n c to o tsome communication cost.

3.3 Distributed Single Target Tracking Sensing: The processing node selects a set of sensors togenerate the next measurements and tells the other sensors

As discussed before, communication may consume far to stay dormant. Communication is needed to suppress the
more energy than computation or sensing. The prediction other nodes. In the extreme case, only the processing node
step in single target tracking is basically a local operation is allowed to sense.
and does not require communication. On the other hand, the Update: The observed measurements are sent to the
update step requires acquiring a sensor measurement, thus processing node and used to update the track state estimate.
involving communication unless processing takes place at This track is assigned to the sensor node whose coverage
the sensor node. has the most overlap with the updated state estimate and the

There are two ways of reducing the communication cost steps are repeated.
in the update step. The first is to reduce the number of In the above steps, only relevant sensors are active while
sensor measurements. In a dense sensor network, many the rest are suppressed. The active and suppressed nodes are
measurements are redundant and some may not provide dynamically updated as the target moves in the sensor field.
useful information. This will also cut down on the energy This is to be accomplished via a group management mecha-
used in sensing. The second way is to have the track proc- nism, to be discussed in Section 4.4.
essing follow the motion of the target as given by the state As a result of the group management, at any particular
estimate. Then the sensors generating the measurements time the track state is maintained by only one node and thus
will not be too far from the processing node, making multi- there is no need to consider track fusion and how to deal
hop communication unnecessary. Figure 4 shows an ap- with dependent information. Essentially, the processing for
proach for energy-efficient distributed single target tracking each track is centralized but the processing node follows the
by moving the track processing with the target position. target to minimize communication. This concept is also

discussed in [15, 16].

Estimate at t Prediction at t+1 Updated Estimate at t+1,•_• 3.4 Sensor Selection

,When prediction indicates that multiple sensors can
-. - C observe the target, information and energy considerations

" -6 " require that a single sensor be selected. The Information
Driven Sensor Query (IDSQ) approach [171 selects sensors

A. based on information utility and resource constraints,
thereby efficiently managing the scarce communication and

I A: Processing node after update at t processing resources while satisfying the information needs.
C: Processing node after update at t+1 This information-driven approach to sensor querying and

data routing builds upon data centric routing and storage
o Sensor --- 1 Measurement Communication services such as geographic routing or directed diffusion* Active Sensor -* Track Communication routing [18].

LIProcessing Node ruig[13
The main idea of IDSQ is to base sensor collaboration

decisions on information content as well as constraints on
resource consumption, latency and other costs. In Fig. 5, the

current leader node can task sensor a or b, given the current
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uncertainty about the target position shown as the ellipse at The measurement model for each sensor consists of:
time t. Assuming each sensor provides a distance constraint * Target wise independent state-dependent detection
on the location of the target, then sensor b provides a larger probability
reduction in the uncertainty along the longer axis of the 9 Target wise independent conditional probability
ellipse, and hence is more desirable in terms of information P(zj (t) I x, (t)) for the measurement z. (t) if target
utility, Since communication is the main cost component, i is detected by sensorj
sensors in a network must exploit the information content of i isndetectedfbysensor]
the data already received to optimize the utilities of future * Density of false alarms as a function of the threshold
sensing actions such as that by sensor b. setting

In general, IDSQ formulates the sensor tasking problem Each set zj (t,) of measurements collected at time tk by

as a distributed constrained optimization problem that sensor s 1 , is called a measurement set and contains meas-
maximizes the information gain of sensors while minimiz- urements from targets as well as false alarms. To simplify
ing communication and resource usage. The information the notation, we denote a measurement set by zk. Each
gain depends on the specific sensor and has to be computed
before the measurements are actually taken. For linear measurement in a measurement set zk is uniquely identified
Gaussian models, the information gain from using a particu- by its index (h, k), i.e., the h-th measurement in the meas-
lar sensor depends on the prediction error covariance, which urement set zk. A collection of measurement sets is called
can be computed from the Kalman filter covariance propa- an information set and represents the information available
gation equation and is independent of the actual measure- to the tracker. The multiple target tracking problem is to
ments. For other nonlinear models, the expected informa-
tion gain over all possible measurements has to be used in detemin e the number(ootarget from vthoinformtionase
the optimization. Several methods for computing the infor- target track. A more precise formulation of the problem can
mation gains are discussed in [17], and experimented in be found in [19].
simulations and on field data from sensor network test beds.

Time 1 4.2 Basic Algorithm

T Sensora Multiple target tracking is a difficult problem and many
algorithms have been developed over the years [20, 21]. An
overview of tracking algorithms for ground targets can be

0 Sensor b found in [22]. The main difficulty of multiple target track-

Update update using ing is data association. A measurement may originate from a
sensor asensor b false alarm, a target that has been detected before or a new

Time t+1 target. Furthermore, a target may not be detected by a
"sensor at a given time. Thus, data association is a key

-- component in any multi-target tracking algorithms.
Association algorithms may be simple or sophisticated.

Simple algorithms (e.g., nearest neighbor) may associate
Figure 5: Sensor tasking based on information utility measurements to individual targets independent of the

association decisions of other tracks, while sophisticated
4 Tracking Multiple Targets multiple hypothesis algorithms consider the coordinated

Tracking multiple targets that are far apart can be treated association of measurements to tracks over multiple frames

as single target tracking since there is little interaction si tacking algo rith [19 23].

among the targets. The tracks for different targets are A set of measurement indices (h,k)in an information set

processed in parallel by different sensor nodes. When the . A s o

targets are close to each other relative to the measurement is a track when it is hypothesized to originate from a single

error, the tracking of one target cannot be treated independ- track. A set of tracks is called a data-to-data association

ently from those of the other targets. In particular, meas- hypothesis, or simply a (scene) hypothesis when it is a

urements have to be associated to the different targets or consistent set of hypothesized detected targets. The system

false alarms. Allocating the processing to the sensor nodes state of any MHT algorithm is a collection of hypotheses

will be more involved, and tracks with the posterior probability for each hypothesis
and target state distribution for each track. Moreover, the

4.1 Model collection of hypotheses formed and evaluated on any given
information set can be decomposed into stochastically

We assume that there are multiple targets i =1,.., N. independent components, each called a stochastic cluster or
Each target i has a state xi (t) at time t. The state transition simply a cluster. The measurement-oriented MHT algorithm

for each target is independent of that of another target and first developed in [23] and generalized in [19] consists of
given by the conditional probability P(x, (tkl ) I x, (tk)). the following steps shown in Fig. 6:
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Time alignment (prediction). The state estimates of the The cluster, as defined here, refers to the logical data
tracks in each cluster are predicted to the time of the meas- structure of the tracks and hypotheses. However, in sensor
urement set. networks, a cluster is often meant to be a group of nodes.

Gating. The candidate track and measurement pairs that The hard problem for distributed tracking is to map the
can possibly be associated are computed using gates that logical clusters of tracks to the physical clusters of sensor
reflect state estimate and measurement uncertainty, nodes, as we will discuss below and in Sec. 4.4.

Track-to-measurement likelihood calculation. For each The components in a cluster are distributed to the sensor
pair of track and measurement that can be associated, the nodes in a two level structure:
likelihood of association is computed. e Individual tracks are assigned to sensor nodes based

Cluster merging. Based on this likelihood calculation, on the closeness of the sensor nodes to the center of
some of the clusters are merged into a larger cluster to the track state distributions. Some nodes may be re-
account for cross-cluster correlation. sponsible for multiple tracks.

Hypothesis and track evaluation. For each cluster, a set * The sensor nodes within a cluster elect a node to be
of hypotheses is formed by assigning each measurement responsible for the tracks and hypotheses in the clus-
either to an old track (targets already detected), a new track ter. Some load balancing may be needed to make sure
(a newly detected target), or a false alarm. The probability that the "leader" node for the cluster or cluster proc-
of each hypothesis is then evaluated by first multiplying the essing node is not overloaded.
appropriate track-to-measurement likelihoods followed by The following operations are performed at each sensor
normalization. Each track is then evaluated by updating its observation time tk.

target state distribution by a newly assigned measurement. For each track, the operations are similar to those in
Hypothesis pruning and combining. The size of each single target tracking.

updated cluster is reduced by pruning weak hypotheses and s ret tracking.Prediction. The processing node for the track predicts the
combining similar hypotheses track state estimate, and assigns the track to the sensor

Cluster splitting. Whenever possible, a cluster will be closest to the center of the target state distribution.
split into sub clusters, corresponding to separating targets. Gating. Based on the current state estimate and sensor

measurement uncertainty, the track processor or owner
Time Alignment determines the sensors that should collect measurements.

Gating Sensing. The active sensors return with one or more
,+ measurements to the owner of the track.

Association Likelihood Computatlonl Track measurement association likelihood computation.
The track owner computes the track/measurement associa-

Cluster Merging tion likelihood(s).
F Hypothesls1rrack Form atio nlfivaluaýtlon

, + The cluster processing node determines whether it should
SHypothesis Prunlng/Comb=nnlg merge its cluster with another cluster by examining if these

,+ two clusters have tracks that can be associated with thesame measurement. When two clusters merge, one of the
cluster processors takes over the responsibility of the

Figure 6: Structure of Multiple Hypothesis Tracking merged cluster and the tracks may be reassigned to the track
processing nodes for load balancing. Within this (merged)

4.3 Distributed Multiple Target Tracking cluster, the cluster processor performs association using anassignment algorithm (single frame association) or multiple

We assume that computation is less an issue than com- hypothesis processing (multiple frame association).
munication, and the main objective is minimizing the Each track then updates its state estimate using the
communication among the nodes. As before, predicting the associated measurement. The cluster is split into multiple
future state of a track is a local operation and does not clusters and assigned to multiple nodes if possible. The
require any communication. However, association and process then repeats at another sensor observation time.
update require communicating the sensor measurements to Figure 7 illustrates how clusters merge and split for two
the processing nodes. targets merging and separating.

As in single target tracking, the track state estimate and This processing architecture is centralized at the cluster
track processing should follow the movement of the target. level but the group of nodes responsible for processing each
However, since multiple track association hypotheses may cluster migrates with the cluster. Multiple clusters can be
be associated with a single target, they cannot be processed processed independently except when they merge. Within
independently. In addition, tracks corresponding to targets each cluster, the tracks are assigned to nodes that move with
that come close to each other are dependent and should be the tracks.
processed together. Thus a natural unit for distributed Multiple hypothesis processing requires significant
processing is the cluster. computing power at each processing node. When this is not
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possible, a single hypothesis approach can be used. In some sion regions and unsuppression regions, and the group
highly confusing situation, e.g., when two targets are very membership of nodes will change.
close to each other, it may make sense to maintain a single
group track instead of individual target tracks since there is The suppression or collaborative region for a track
insufficient information to make good association decisions. contains the set of sensors that can potentially update the

track. An example of collaborative groups maintained for
Two separate One merged Two split two targets is shown in Fig. 8. With only a single target

clusters cluster clusters

present, sensors other than the leader or leaders in the group
0 0 0 0may not provide much additional information to tracking

Target I and can cause confusion by initiating new tracks. This
single target assumption may hold if the target density is
low or the sensors have short range.

Fig. 8. shows distributed group management for multiple
0 •target tracking on a 17-node sensor network test bed at

Target 2 PARC. The lower figure shows the physical sensor lay
down and communication topology. The upper figure shows
how two distinct tracks are maintained by separate groups

O Sensor LI Track Processing Node of collaborating sensors, as enclosed by the rectangular
A Cluster Processing Node bounding boxes.

* Active Sensor i Tracklhypothesis Communication

Figure 7: Cluster Migration in Multi-Target Tracking

4.4 Group Management for Track Initiation
and Maintenance

The distributed group management approach for track
initiation and maintenance presented in [24] is one way to
map the logical tracks to physical sensors for both single or 7
multiple target tracking problems. A collaborative group is
a set of sensor nodes that are responsible for the initiation
and maintenance of a single track. Effectively, these are Sensor laydown
sensors whose coverage overlaps with the state estimate of
the track.

17 - 1

Track Initiation. Figure 8: Distributed Track Management: Experiment on
When the target enters the sensor field or emits signal for PARC Sensor Network Test Bed.

the first time, it is detected by a set of sensor nodes.
1. Each individual sensor performs local detection using a Track Maintenance.

likelihood ratio test. When the targets are far apart, their tracks are handled
2. Nodes with detections form a collaborative group and by multiple collaborative groups working in parallel. When

select a single leader (e.g., based on time of detection). targets cross, the position uncertainty regions for their
While we discuss the single leader approach, it is also tracks overlap and the collaborative groups for these tracks
possible that a small number of nodes are elected to are no longer distinct. This can be detected when a leader
share the leadership. node receives a suppression message from with different

3. Leader initiates a track and assigns a track identity using (track) ID from its own. When two groups collide, the
detection time. It uses the uncertainty in track position sensor measurements in the overlapping region can now be
estimate and maximum detection range to calculate a associated to either one of the two tracks.
suppression region and informs all group members in Data association algorithms such as optimal assignment
the suppression region to stop detection. This reduces or multiple hypothesis processing can be used to resolve
energy consumption of the other nodes and avoids fur- this ambiguity. In reference [24], a simple track merging
ther track initiation. The assumption is that there is only approach is proposed to keep the older track and drop the
one target in the neighborhood. younger track. The two collaborative groups then merge

4. As the target moves, sensors are selected to make into a single group.
measurements, using for example the IDSQ algorithm. This approach works well if the two tracks were initiated

These measurements will be used to update the suppres- from a single target. When the two tracks result from two
targets, the merging operation will temporarily track the two
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targets as one. When they separate again, a new track [8] C. Y. Chong and S. Kumar, "Sensor Networks: Evolution,
corresponding to one of the targets will be re-initiated. Opportunities, and Challenges," Proc. IEEE, Aug. 2003 (to
However the identities of the targets will be lost. appear).

Using an identity management algorithm, the ambiguities [9] R. T. Lacoss, "Distributed Mixed Sensor Aircraft Tracking,"
Proc. American Control Conf., Minneapolis, MN, Jun., 10-

in the target identities after crossing tracks can be resolved 12, 1987.

using additional local evidence of the track identity and then " b e t "p M L
[101 "Distributed sensor networks," Final Report, M.I.T. Lincoln

propagate the information to other relevant tracks. Details Laboratory, Sep. 1986.
of distributed identity management can be found in [25]. [11] C. Y. Chong and S. Mori, "Convex Combination and

Covariance Intersection Algorithms in Distributed Fusion,"
5 Conclusions Proc. 4th Int. Conf. on Information Fusion, Montreal, Can-

ada, Aug. 2001.

Wireless ad hoc sensor networks have great potential in [12] W. M. Merrill, K. Sohrabi, L. Girod, J. Elson, F. Newberg,
target tracking applications since the sensors can be de- and W. Kaiser, "Open Standard Development Platforms for
ployed close to the targets of interest. At the same time, Distributed Sensor Networks," Proc. SPIE Unattendedpneroyeand closedt the cstargs intsreqirest.hat the sames tmeGround Sensor Technologies and Applications, AeroSense
energy and bandwidth constraints require that the process- 2002, vol. 4723, Orlando, FL, Apr. 2002.
ing be distributed over the sensor nodes. We reviewed the [13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, K. S.
evolution of tracking in sensor networks and showed how J. Pister, "System Architecture Directions for Networked
the structure of standard tracking algorithms can be used to Sensors," Proc. Int. Conf. Architectural Support for Pro-
distribute the processing. In particular, processing should gramming Languages and Operating Systems, 2000.
follow the movement of the target(s) over the sensor field. [14] S. Kumar and D. Shepherd, "SensIT: Sensor Information
This is fairly straightforward in single target tracking but Technology for the Warfighter," Proc. 4th Annual Conf. on
distributing the data association functions in multiple target Information Fusion, Montreal, Quebec, Aug. 2002.
tracking is more complicated. We gave some examples of [15] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, "Collabora-
recent tracking work to illustrate these concepts. tive Signal and Information Processing: An Information Di-Reenttracking wsrkbtod itratein thesireoepts. adhocsrected Approach," Proc. IEEE, 2003, to appear.

Research in distributed tracking in wireless ad hoc sensor [16] R. R. Brooks, C. Griffin, and D. S. Friedlander, "Self-
networks is just beginning. In order to address more com- Organized Distributed Sensor Network Entity Tracking," Int.
plicated scenarios, many research issues have to be ad- Journal of High Performance Computing Applications, vol.
dressed. Examples include what kind of prior information is 16, no. 3, Fall 2002.
needed for each node and how to provide this information. [17] M. Chu, H. Haussecker, and F. Zhao, "Scalable Information-
Another issue is how to handle out-of-sequence measure- Driven Sensor Querying and Routing for Ad Hoc Heteroge-
ments due to communication delays. In addition, data neous Sensor Networks," Int. J. High Performance Comput-
association is a challenge and doing it efficiently over a ing Applications, vol. 16, no. 3, pp. 90-110, Fall 2002
network is even more difficult. When the same target is [18] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,

and F. Silva, "Directed Diffusion for Wireless Sensor Net-
detected and processed by multiple sensor nodes we also working," ACM/IEEE Trans. Networking, vol. 11, no.1, pp.
have to associate the tracks and make sure that information 2-16, Feb. 2002.
is not double-counted. [19] S. Mori, C. Y. Chong, E. Tse, and R. P. Wishner, "Tracking

and Classifying Targets Without A Priori Identification,"
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